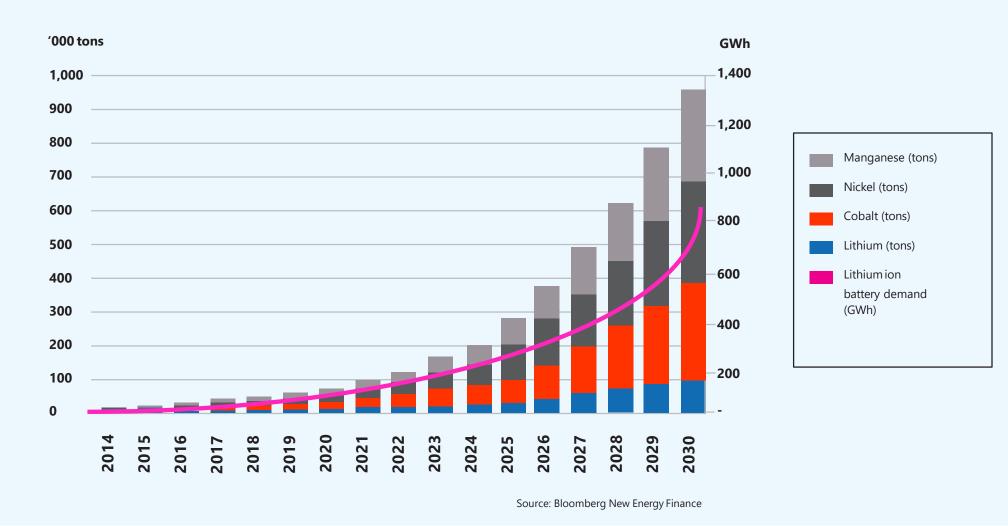





TSX.V: USCO, Frankfurt: 26X, OTCQB: USCFF

FOCUSED ON THE ACQUISITION AND DEVELOPMENT OF HIGH GRADE COBALT DEPOSITS


March 2018

### Disclaimer

This presentation includes certain statements that may be deemed forward looking statements. All statements in this discussion, other than statements of historical facts, which address future production, reserve potential, exploration activities and events or developments that the Company expects, are forward looking statements. Such forward-looking statements include, without limitation: (i) estimates of future prices, supply, demand and/or production; (ii) estimates of future cash costs; (iii) estimates of future capital expenditures; (iv) estimates regarding timing of future development, construction, production or closure activities; (v) statements regarding future exploration results; (vi) statements regarding cost structure, project economics, or competitive position, and; (vii) statements comparing the Company's properties to other mines, projects or metals. Although the Company believes the expectations expressed in such forward looking statements are based on reasonable assumptions, such statements are not quarantees of future performance and actual results or developments may differ materially from those in the forward looking statements. Factors that could cause actual results to differ materially from those in forward looking statements include market prices, exploitation and exploration successes, continued availability of capital and financing, and general economic, market or business conditions. Investors are cautioned that any such statements are not quarantees of future performance, that the Company expressly disclaims any responsibility for revising or expanding the forward looking statements to reflect actual results or developments, and that actual results or developments may differ materially from those projected, in the forward looking statements, except as required by law. Mr. Garry Clark, P. Geo., Independent Director of USCO, is the qualified person as defined in NI 43-101, who has reviewed and approved the scientific and technical content in this presentation.

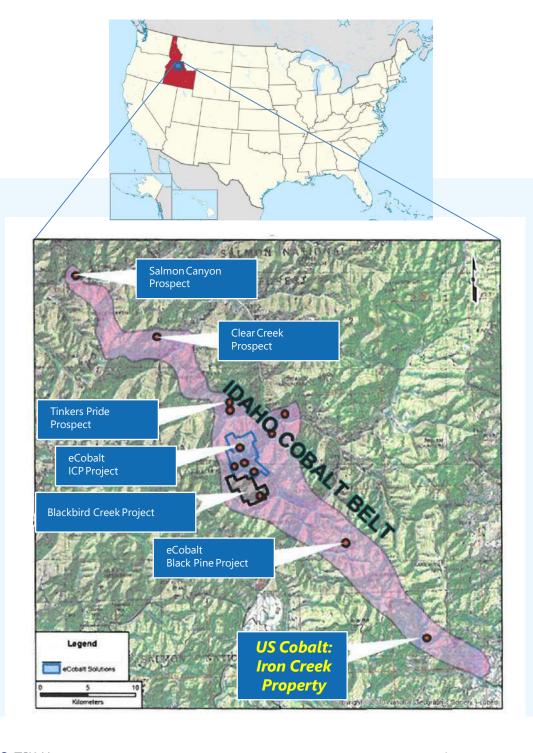


## Cobalt Demand



Cobalt price is expected to soar with the growth in demand for lithium ion batteries




## Idaho Cobalt Belt

#### **ECobalt's IDAHO COBALT PROJECT (ICP):**

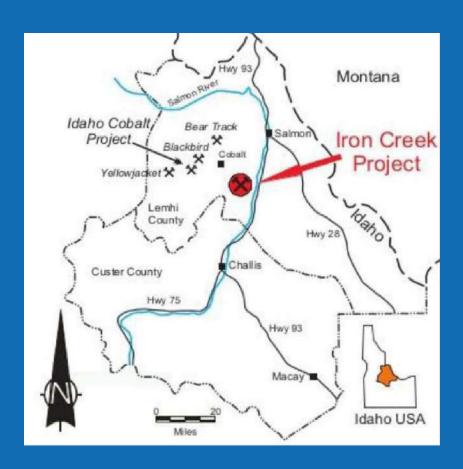
- Permits understood to be largely in place
- 3.4 Mt@ 0.59% Co, 0.73% Cu, 0.016 oz/t Au (M+I)

In a Feasibility Study dated September 27, 2017, Micon updated ICP's Ram deposit estimate of cobalt, copper, and gold resources. The ICP is fully environmentally permitted having completed an Environmental Impact Statement and has received a positive Record of Decision on its Mine Plan of Operations from the U.S. Department of Agriculture National Forest Service and a water discharge NPDES (National Pollutant Discharge Elimination System) permit from the U.S. Environmental Protection Agency.

Initial construction of the project began in 2011, before the project was placed on Care and Maintenance in 2013 due to market conditions. In 2017 the Company recommenced pre-construction activities, and to date approximately 90% of the earthworks have been completed at the mine site.






# US Cobalt's Iron Creek Cobalt Project, Idaho

Historic estimate, non compliant with NI 43-101, of <u>1.3m tons</u> <u>grading 0.59% Cobalt</u> - estimated by previous explorers.

Located in Central Idaho, approximately 42 kilometers from the town of Salmon

#### Property encompasses:

- 1,797 acres in 90 lode mining claims, including 7 patented claims totaling 137 acres, and 83 unpatented claims totaling 1,660 acres
- 28 kilometers south east of eCobalt's Feasibility Study stage, Idaho Cobalt Project, within a well known mineral trend known as the "Idaho Cobalt Belt", a NW-SE trending, 40 km long belt of cobalt mineralized Proterozoic-age Yellowjacket Formation sedimentary rocks
- Discovered in the 1940's as a possible iron deposit. Explored for copper in the 1970's by Hanna Mining and later in the 1980's and 1990's by Noranda, Inspiration Mines, and Cominco
- Historically, approximately 30,000 feet of diamond drilling and 2,000 feet of underground drifting was completed
- US Cobalt Inc. has completed: approximately 35,000 feet (about 10,600 meters) of core drilling from surface, rehabilitated two of the three adits, and commenced underground core drilling.





USCO:TSX-V

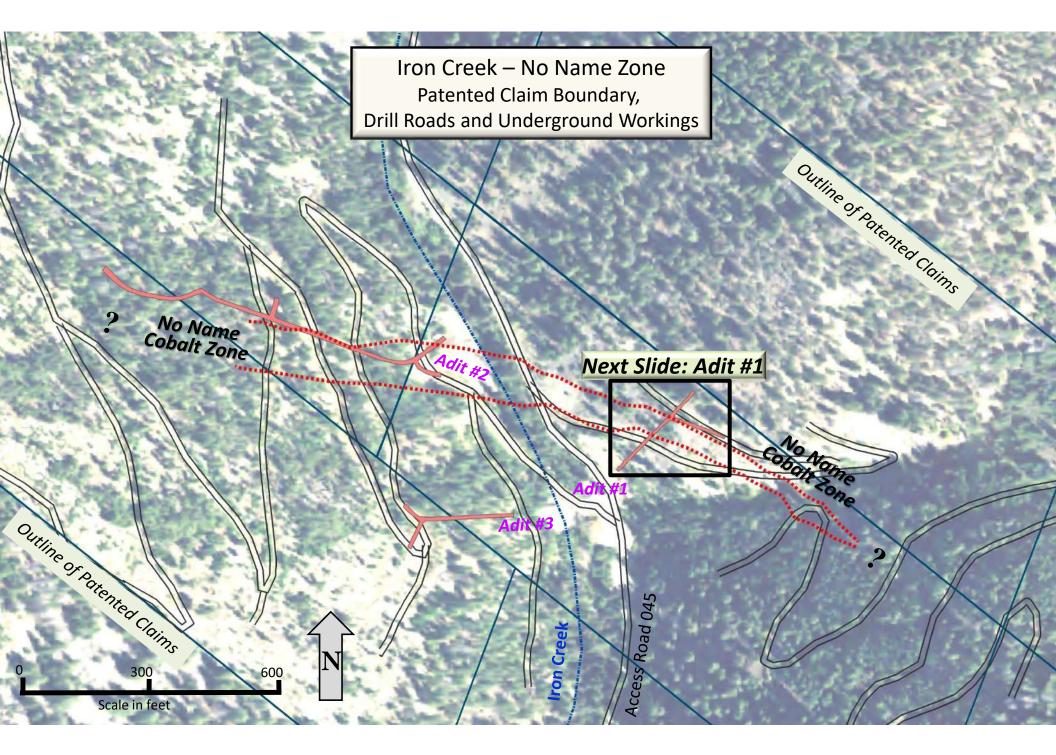
10

## **Historic Estimates**

USCO considers the cobalt and copper tonnage and grade estimates above as historical estimates. The historical estimates do not use categories that conform to current CIM Definition Standards on Mineral Resources and Mineral Reserves as outlined in National Instrument 43-101, Standards of Disclosure for Mineral Projects ("NI 43-101") and have not been redefined to conform to current CIM Definition Standards. They were prepared in the 1980s prior to the adoption and implementation of NI 43-101.

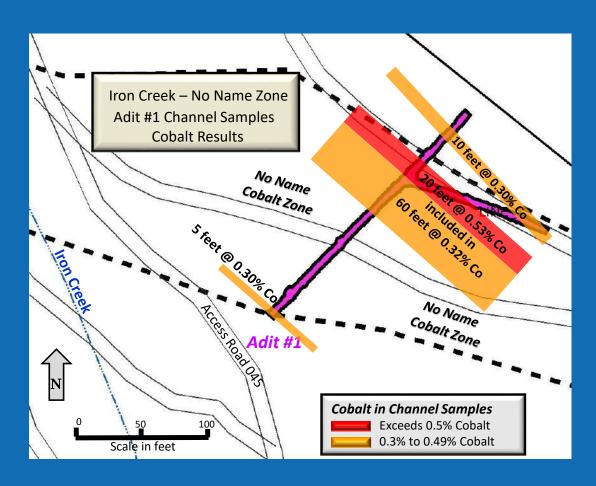
A qualified person has not done sufficient work to classify the historical estimates as current mineral resources and USCO is not treating the historical estimates as current mineral resources. More work, including, but not limited to, drilling, will be require to conform the estimates to current CIM Definition Standards. Investors are cautioned that the historical estimates do not mean or imply that economic deposits exist on the Property.

USCO has not undertaken any independent investigation of the historical estimates nor has it independently analyzed the results of the previous exploration work in order to verify the accuracy of the information. USCO believes that the historical estimates are relevant to continuing exploration on the Property.




Erythrite - "Cobalt Bloom"

Co<sub>3</sub>(AsO<sub>4</sub>)2•8(H<sub>2</sub>O)









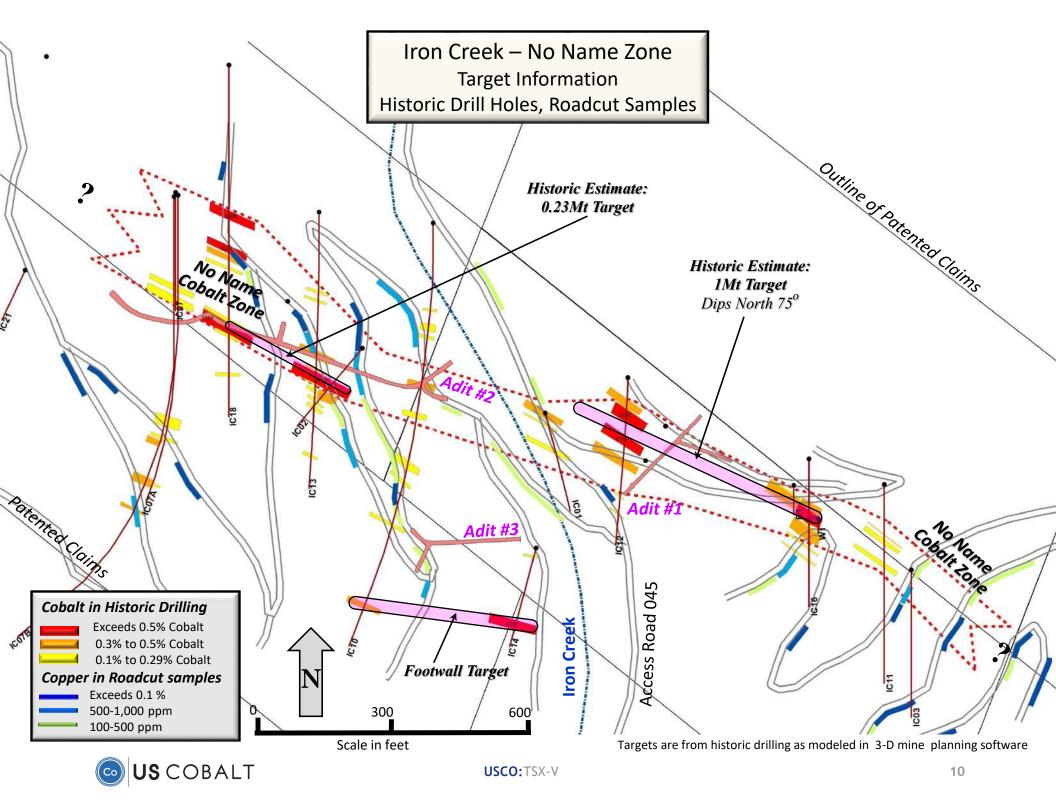

# Adit #1 Channel Samples - Cobalt

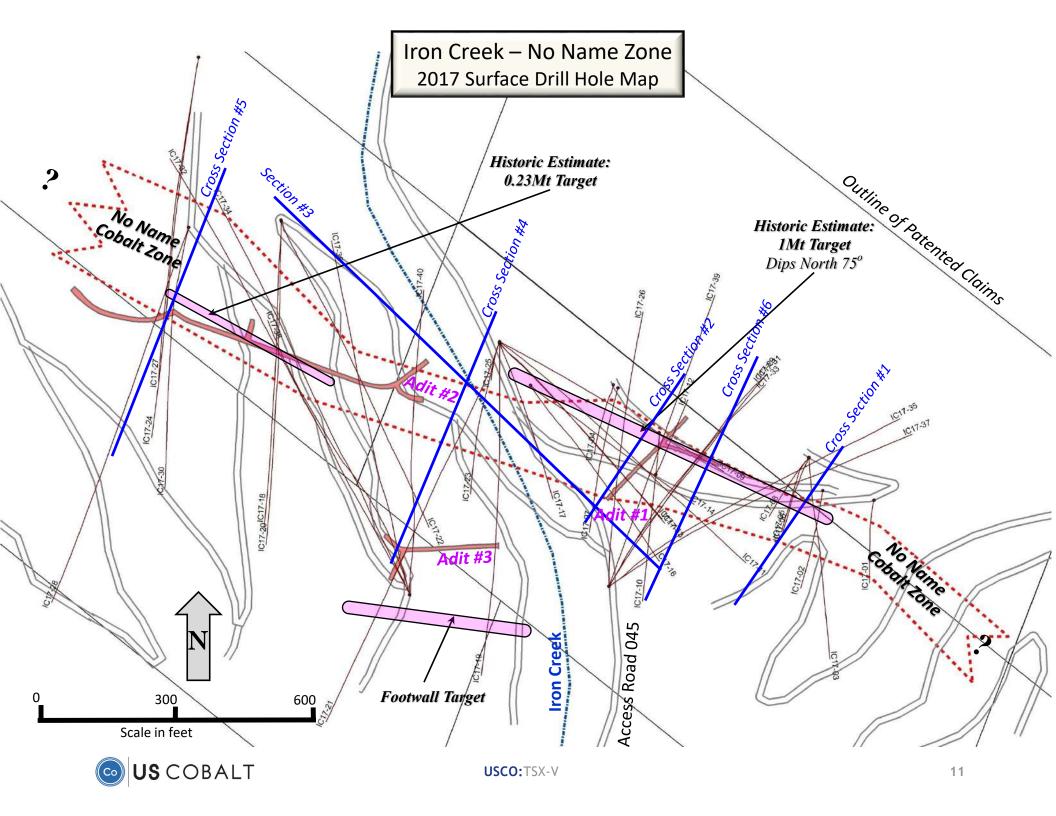


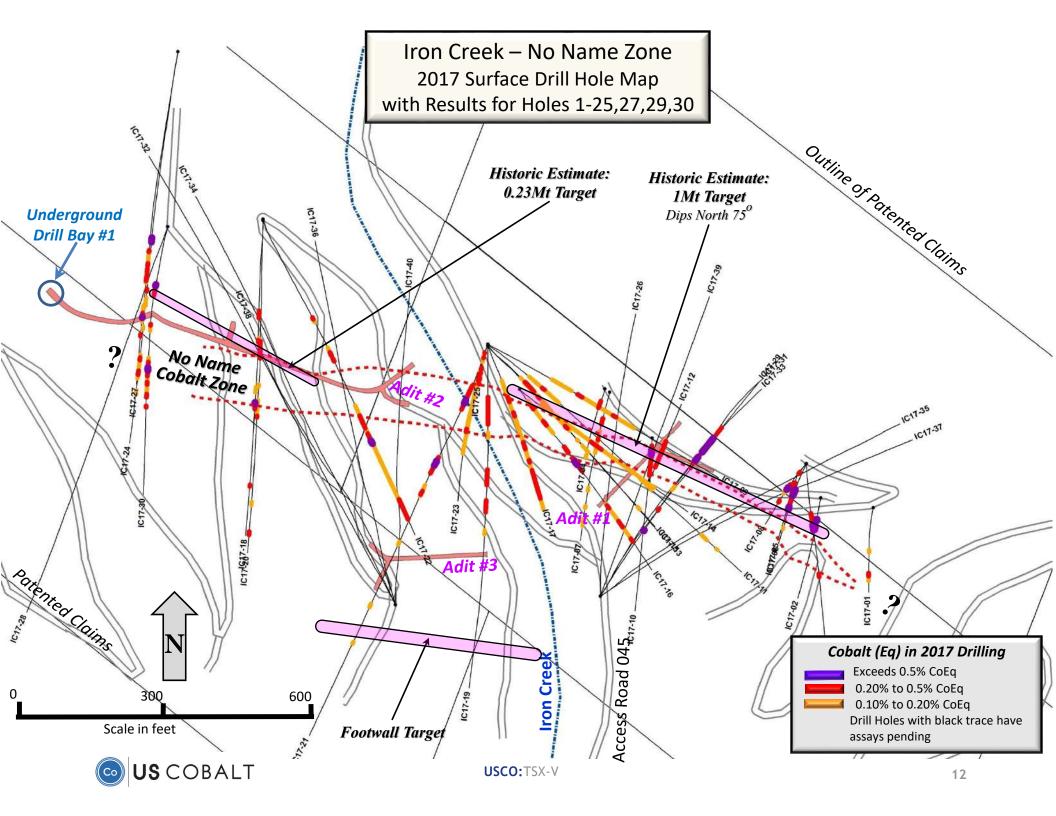


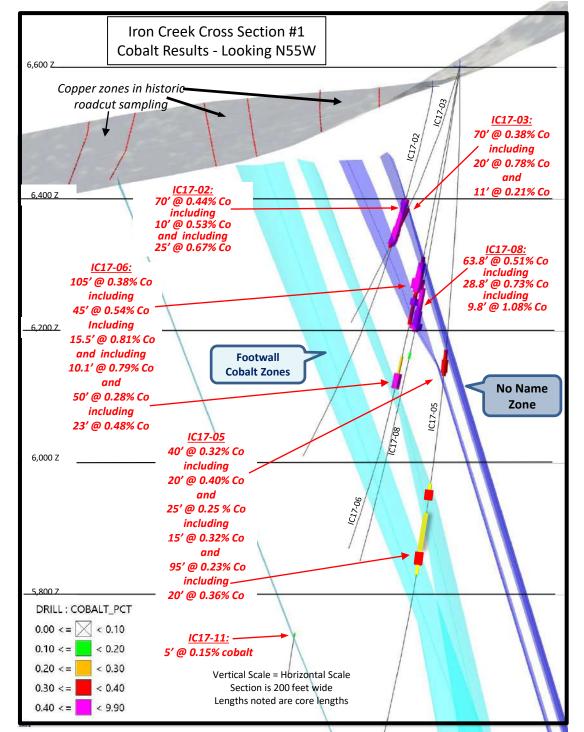
Adit #1




# Adit #1 Channel Samples - Copper





**Channel Sample** 

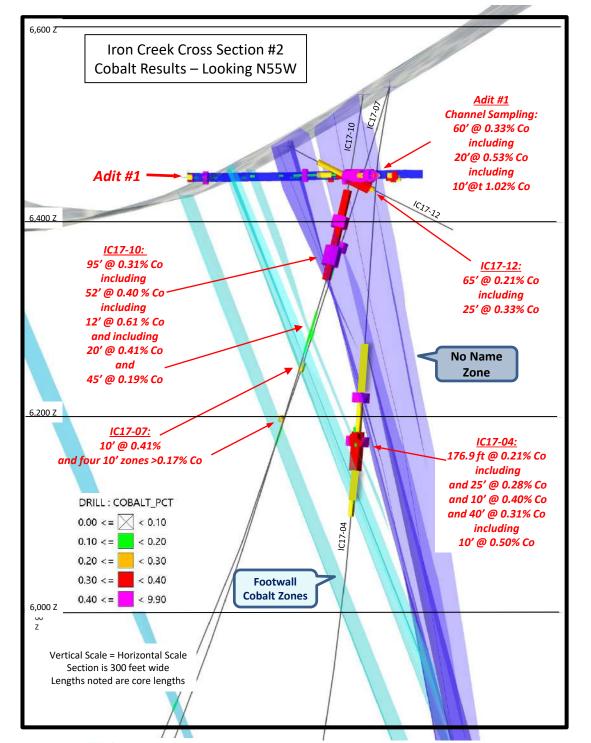






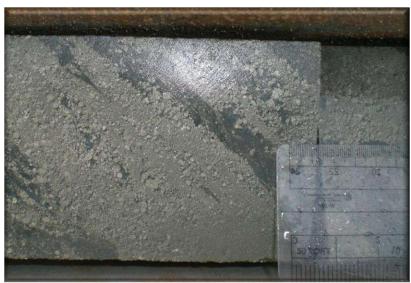






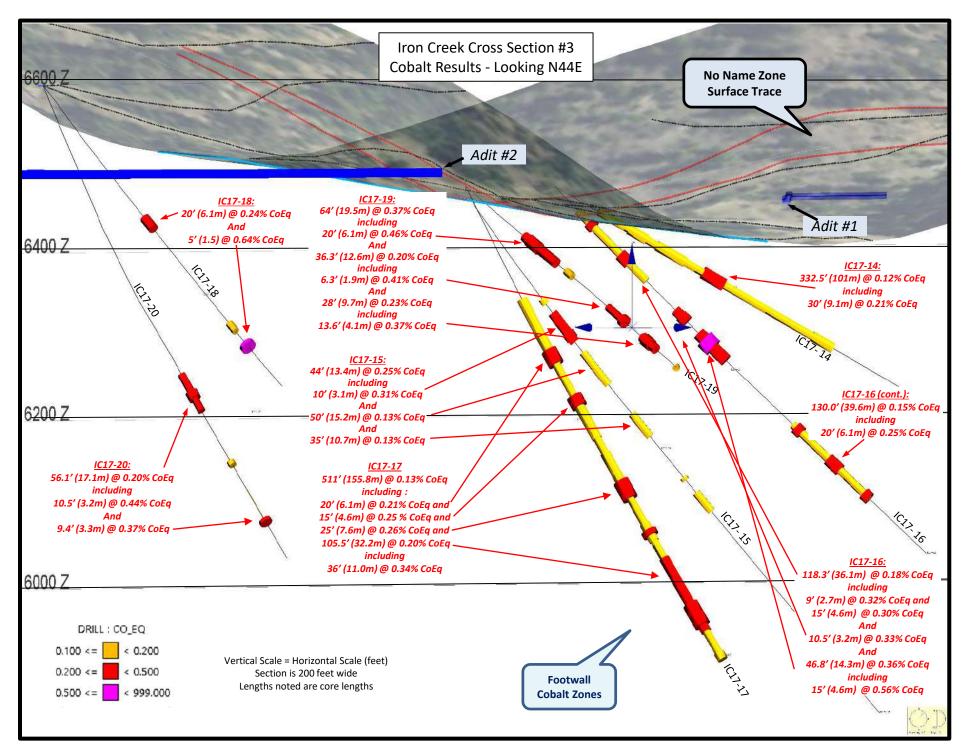

Drill hole IC17-02 massive sulfides



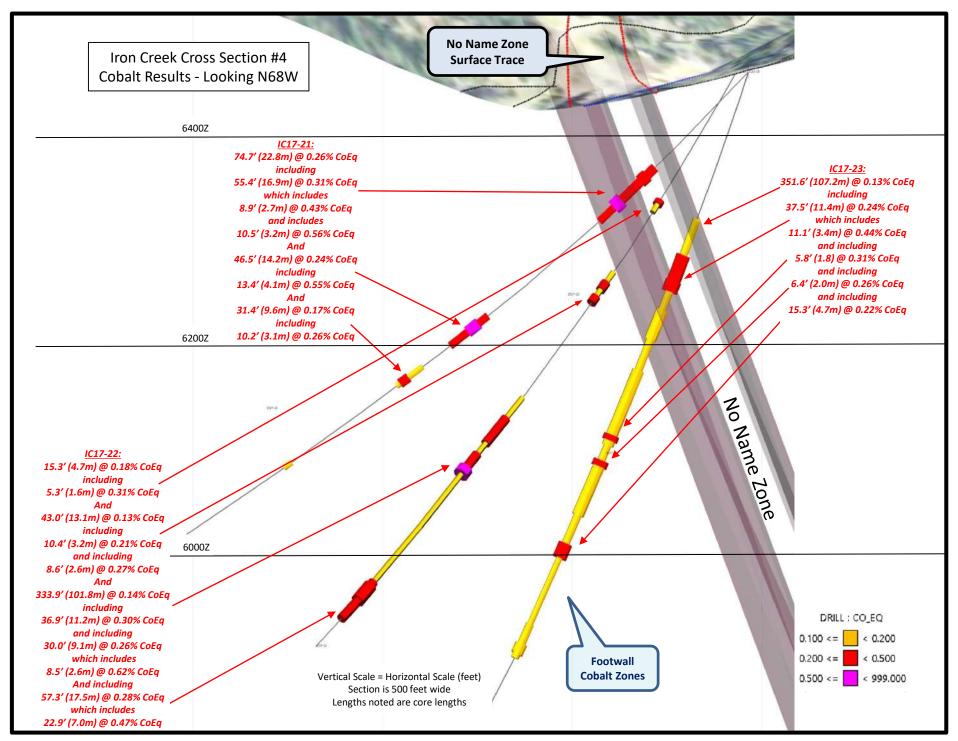

One of Two surface drills active in 2017



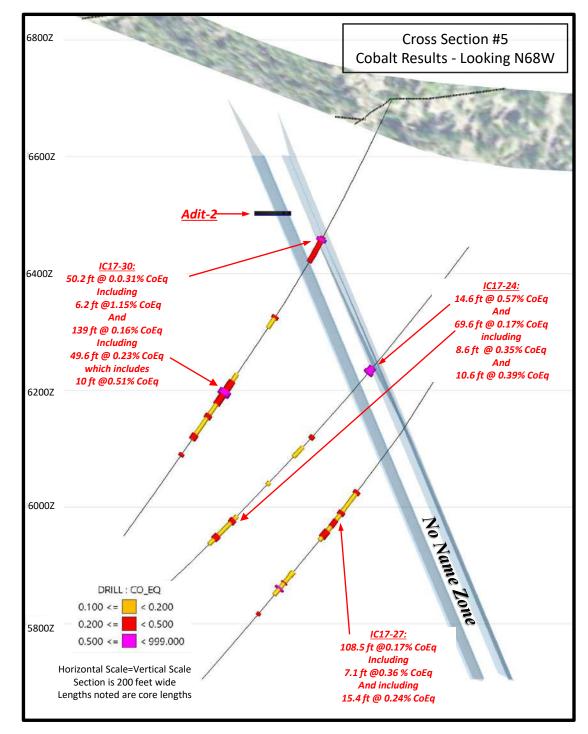





Massive sulfides in drill core




Massive sulfides in drill core



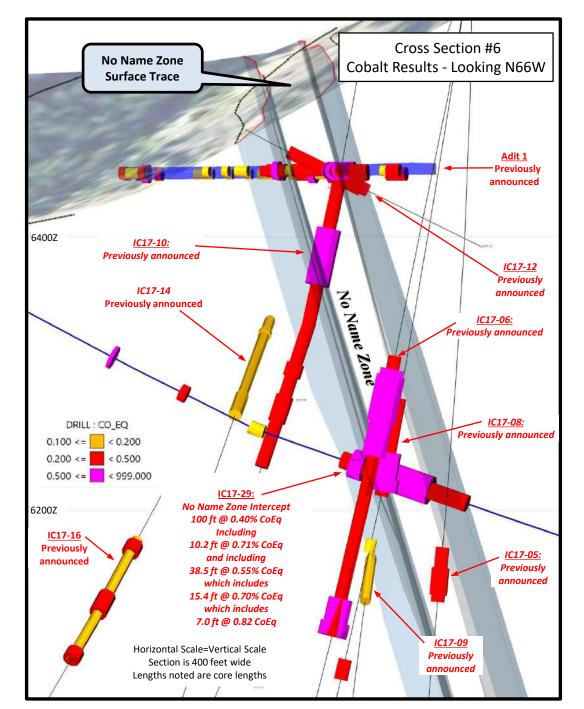











Adit #2, Drill Bay #1 - massive sulfides



Drill in place for 2018 underground program







Adit #2 – Installing phones



Adit #2 - ready for 2018 underground drilling

18



Drill Holes 1 – 13 are reported as Cobalt grades
Expanded sampling for 8 of these holes will be updated as CoEq grades

| Hole ID | From  | То    | Drilled<br>Width | True<br>Width | Average<br>Cobalt % |                | From  | То    | Drilled<br>Width | True<br>Width | Average<br>Cobalt % |
|---------|-------|-------|------------------|---------------|---------------------|----------------|-------|-------|------------------|---------------|---------------------|
| IC17-01 | 300   | 315   | 15               |               | 0.17                |                |       |       |                  |               |                     |
| and     | 430   | 445   | 15               |               | 0.23                |                |       |       |                  |               |                     |
| and     | 456.7 | 469   | 12.3             |               | 0.17                |                |       |       |                  |               |                     |
|         |       |       |                  |               |                     |                |       |       |                  |               |                     |
| IC17-02 | 177   | 247   | 70               |               | 0.44                | includes       | 177   | 187   | 10               |               | 0.53                |
|         |       |       |                  |               |                     | and includes   | 222   | 247   | 25               |               | 0.67                |
|         |       |       |                  |               |                     |                |       |       |                  |               |                     |
| IC17-03 | 240   | 310   | 70               |               | 0.38                | includes       | 285   | 305   | 20               |               | 0.78                |
| and     | 464   | 475   | 11               |               | 0.21                |                |       |       |                  |               |                     |
|         |       |       |                  |               |                     |                |       |       |                  |               |                     |
| IC17-04 | 265   | 441.9 | 176.9            |               | 0.21                | includes       | 265   | 290   | 25               |               | 0.28                |
|         |       |       |                  |               |                     | and includes   | 315   | 325   | 10               |               | 0.40                |
|         |       |       |                  |               |                     | and includes   | 355   | 395   | 40               |               | 0.31                |
|         |       |       |                  |               |                     | which includes | 360   | 370   | 10               |               | 0.50                |
|         |       |       |                  |               |                     |                |       |       |                  |               |                     |
| IC17-05 | 430   | 470   | 40               |               | 0.32                | includes       | 445   | 465   | 20               |               | 0.40                |
| and     | 635   | 660   | 25               |               | 0.25                | includes       | 645   | 660   | 15               |               | 0.32                |
| and     | 680   | 775   | 95               |               | 0.23                | includes       | 740   | 760   | 20               |               | 0.36                |
|         |       |       |                  |               |                     |                |       |       |                  |               |                     |
| IC17-06 | 295   | 400   | 105              |               | 0.38                | includes       | 305   | 350   | 45               |               | 0.54                |
|         |       |       |                  |               |                     | which includes | 329.5 | 345   | 15.5             |               | 0.81                |
|         |       |       |                  |               |                     | and includes   | 360   | 370.1 | 10.1             |               | 0.79                |
| and     | 450   | 500   | 50               |               | 0.28                | includes       | 477   | 500   | 23               |               | 0.48                |
|         |       |       |                  |               |                     |                |       |       |                  |               |                     |



USCO:TSX-V

19

Drill Holes 1 – 13 are reported as Cobalt grades
Expanded sampling for 8 of these holes will be updated as CoEq grades

| Hole ID        | From       | То           | Drilled<br>Width | True<br>Width | Average<br>Cobalt % |                | From | То    | Drilled<br>Width | True<br>Width | Average<br>Cobalt % |
|----------------|------------|--------------|------------------|---------------|---------------------|----------------|------|-------|------------------|---------------|---------------------|
| IC17-07        | 170        | 180          | 10               |               | 0.41                |                |      |       |                  |               |                     |
| and            | 200        | 210          | 10               |               | 0.18                |                |      |       |                  |               |                     |
| and            | 265        | 275          | 10               |               | 0.17                |                |      |       |                  |               |                     |
| and            | 300        | 310          | 10               |               | 0.29                |                |      |       |                  |               |                     |
| and            | 370        | 390          | 20               |               | 0.13                |                |      |       |                  |               |                     |
| and            | 675        | 685          | 10               |               | 0.19                |                |      |       |                  |               |                     |
|                |            |              |                  |               |                     |                |      |       |                  |               |                     |
| IC17-08        | 330        | 393.8        | 63.8             |               | 0.51                | includes       | 365  | 393.8 | 28.8             |               | 0.73                |
|                |            |              |                  |               |                     | which includes | 384  | 393.8 | 9.8              |               | 1.08                |
| and            | 430        | 440          | 10               |               | 0.17                |                |      |       |                  |               |                     |
|                |            |              |                  |               |                     |                |      |       |                  |               |                     |
| IC17-09        | 210        | 240          | 30               |               | 0.18                |                |      |       |                  |               |                     |
| and            | 255        | 265          | 10               |               | 0.23                |                |      |       |                  |               |                     |
| and            | 395        | 425          | 30               |               | 0.19                | includes       | 410  | 420   | 10               |               | 0.30                |
|                |            |              |                  |               |                     |                |      |       |                  |               |                     |
| IC17-10        | 100        | 195          | 95               |               | 0.31                | includes       | 128  | 180   | 52               |               | 0.40                |
|                |            |              |                  |               |                     | which includes | 128  | 140   | 12               |               | 0.61                |
|                |            |              |                  |               |                     | and includes   | 160  | 180   | 20               |               | 0.41                |
| and            | 230        | 275          | 45               |               | 0.19                |                |      |       |                  |               |                     |
|                |            |              |                  |               | _                   |                |      |       |                  |               |                     |
| IC17-11        | 962.5      | 967.5        | 5                |               | 0.15                |                |      |       |                  |               |                     |
| 1047.43        | 25         | 100          | C.F.             |               | 0.24                | to alorda a    | 70   | 0.5   | 25               |               | 0.22                |
| IC17-12        | 35         | 100          | 65               |               | 0.21                | includes       | 70   | 95    | 25               |               | 0.33                |
| IC17 12        | 190        | 101          | 11               |               | 0.14                |                |      |       |                  |               |                     |
| IC17-13<br>and | 180<br>245 | 191<br>256.5 | 11.5             |               | 0.14                |                |      |       |                  |               |                     |
| and            | 350        | 355          | 11.5<br>5        |               | 0.14                |                |      |       |                  |               |                     |
| anu            | 330        | 333          | J                |               | 0.23                |                |      |       |                  |               |                     |



USCO:TSX-V

20

Drill Holes 14 – 23 are reported as CoEq grades

| Hole ID |                | From feet | To feet | Drilled<br>Length<br>feet | True<br>Thick<br>Feet | True Thick<br>Meters | Cu %  | Cobalt% | CoEq% |
|---------|----------------|-----------|---------|---------------------------|-----------------------|----------------------|-------|---------|-------|
| IC17-14 |                | 62        | 394.5   | 332.5                     | 116                   | 35.4                 | 0.34  | 0.09    | 0.12  |
|         | including      | 62        | 240     | 178                       | 58.3                  | 17.8                 | 0.23  | 0.11    | 0.13  |
|         | which includes | 75.7      | 92      | 16.3                      | 5.3                   | 1.6                  | 0.01  | 0.2     | 0.2   |
|         | and includes   | 105       | 130     | 25                        | 11                    | 3.4                  | 0.08  | 0.12    | 0.12  |
|         | and includes   | 145       | 185     | 40                        | 14.5                  | 4.4                  | 0.19  | 0.14    | 0.16  |
|         | and includes   | 210       | 240     | 30                        | 10.6                  | 3.2                  | 0.92  | 0.12    | 0.21  |
|         | and includes   | 275       | 394.5   | 119.5                     | 41.5                  | 12.6                 | 0.56  | 0.06    | 0.11  |
|         | which includes | 365       | 394.5   | 29.5                      | 10.2                  | 3.1                  | 0.61  | 0.11    | 0.16  |
|         |                |           |         |                           |                       |                      |       |         |       |
| IC17-15 |                | 164       | 172     | 8                         | 4.2                   | 1.3                  | 0.04  | 0.13    | 0.13  |
|         | and            | 185       | 229     | 44                        | 23                    | 7.0                  | 0.17  | 0.23    | 0.25  |
|         | which includes | 215       | 225     | 10                        | 5.4                   | 1.6                  | 0.04  | 0.31    | 0.31  |
|         | and            | 245       | 295     | 50                        | 27.8                  | 8.5                  | 0.12  | 0.11    | 0.13  |
|         | and            | 340       | 375     | 35                        | 18.1                  | 5.5                  | 0.47  | 0.08    | 0.13  |
|         | and            | 438.6     | 442.8   | 8.3                       | 2.2                   | 0.7                  | 0.02  | 0.16    | 0.16  |
|         | and            | 462.6     | 491.6   | 29                        | 14.8                  | 4.5                  | 0.01  | 0.11    | 0.11  |
|         | and            | 725       | 735     | 10                        | 5.2                   | 1.6                  | 0.004 | 0.14    | 0.14  |
|         |                |           |         |                           |                       |                      |       |         |       |
| IC17-16 |                | 41.7      | 160     | 118.3                     | 74.6                  | 22.7                 | 0.18  | 0.16    | 0.18  |
|         | which includes | 61        | 70      | 9                         | 5.9                   | 1.8                  | 0.02  | 0.32    | 0.32  |
|         | and includes   | 115       | 130     | 15                        | 9.6                   | 2.9                  | 0.96  | 0.21    | 0.3   |
|         | and            | 210       | 230     | 20                        | 12.4                  | 3.8                  | 0.49  | 0.18    | 0.23  |
|         | which includes | 219.5     | 230     | 10.5                      | 6.5                   | 2.0                  | 0.73  | 0.26    | 0.33  |
|         | and            | 250       | 296.8   | 46.8                      | 29.1                  | 8.9                  | 2.39  | 0.14    | 0.36  |
|         | which includes | 260       | 275     | 15                        | 9.3                   | 2.8                  | 4.05  | 0.18    | 0.56  |
|         | and            | 410       | 540     | 130                       | 82.2                  | 25.1                 | 0.003 | 0.15    | 0.15  |
|         | which includes | 415       | 425     | 10                        | 6.25                  | 1.9                  | 0.002 | 0.21    | 0.21  |
|         | which includes | 470       | 490     | 20                        | 12.5                  | 3.8                  | 0.001 | 0.25    | 0.25  |
|         | which includes | 530.5     | 540     | 9.5                       | 6.2                   | 1.9                  | 0.002 | 0.22    | 0.22  |



Drill Holes 14 – 23 are reported as CoEq grades

|         |                |           |         | Drilled     | True Thick | True Thick |       |         |       |
|---------|----------------|-----------|---------|-------------|------------|------------|-------|---------|-------|
| Hole ID |                | From feet | To feet | Length feet | Feet       | Meters     | Cu %  | Cobalt% | CoEq% |
| IC17-17 |                | 154.5     | 665.5   | 511         | 364.4      | 111.1      | 0.13  | 0.11    | 0.13  |
| 1017 17 | which includes | 154.5     | 245     | 90.5        | 63.4       | 19.3       | 0.14  | 0.1     | 0.13  |
|         | which includes | 225       | 245     | 20          | 14.1       | 4.3        | 0.33  | 0.18    | 0.21  |
|         | and includes   | 290       | 350     | 60          | 42.9       | 13.1       | 0.59  | 0.08    | 0.14  |
|         | which includes | 290       | 305     | 15          | 10.6       | 3.2        | 1.23  | 0.13    | 0.25  |
|         | and includes   | 370       | 435     | 65          | 46.9       | 14.3       | 0.09  | 0.18    | 0.18  |
|         | which includes | 410       | 435     | 25          | 18.14      | 5.5        | 0.07  | 0.25    | 0.26  |
|         | and includes   | 470       | 495     | 25          | 18.15      | 5.5        | 0.07  | 0.15    | 0.25  |
|         | which includes | 480       | 487.5   | 7.5         | 5.44       | 1.7        | 0.03  | 0.13    | 0.13  |
|         | and includes   | 519.5     | 625     | 105.5       | 78.15      | 23.8       | 0.002 | 0.2     | 0.27  |
|         | which includes | 585       | 616     | 36          | 23.05      | 7.0        | 0.002 | 0.37    | 0.27  |
|         | and includes   | 655       | 665.5   | 10.5        | 7.8        | 2.4        | 0.001 | 0.15    | 0.37  |
|         | and includes   | 033       | 003.3   | 10.5        | 7.0        | 2.4        | 0.01  | 0.13    | 0.13  |
| IC17-18 |                | 245       | 265     | 20          | 18.5       | 5.6        | 1.97  | 0.06    | 0.24  |
| 1017 10 | and            | 445       | 460     | 15          | 14.1       | 4.3        | 0.84  | 0.04    | 0.11  |
|         | and            | 486.2     | 491.2   | 5           | 4.7        | 1.4        | 0.02  | 0.64    | 0.11  |
|         | unu            | 400.2     | 731.2   |             | 7.7        | 1.7        | 0.02  | 0.04    | 0.04  |
| IC17-19 |                | 121       | 185     | 64          | 61.2       | 18.7       | 0.67  | 0.3     | 0.37  |
|         | which includes | 130       | 150     | 20          | 19.13      | 5.8        | 0.30  | 0.43    | 0.46  |
|         | and            | 205       | 217.4   | 12.4        | 11.9       | 3.6        | 0.60  | 0.12    | 0.18  |
|         | and            | 292       | 328.8   | 36.3        | 35.5       | 10.8       | 0.52  | 0.15    | 0.2   |
|         | which includes | 322       | 328.3   | 6.3         | 6.1        | 1.9        | 0.04  | 0.41    | 0.41  |
|         | and            | 365       | 393     | 28          | 27         | 8.2        | 0.01  | 0.23    | 0.23  |
|         | which includes | 370       | 383.6   | 13.6        | 13.13      | 4.0        | 0.003 | 0.37    | 0.37  |
|         | and            | 435       | 445     | 10          | 9.7        | 3.0        | 0.003 | 0.15    | 0.15  |
|         |                |           | _       | -           | _          |            |       |         |       |
| IC17-20 |                | 425.5     | 481.6   | 56.1        | 47.4       | 14.4       | 1.42  | 0.07    | 0.2   |
|         | which includes | 452.5     | 463     | 10.5        | 8.87       | 2.7        | 3.02  | 0.16    | 0.44  |
|         | and            | 562       | 568.5   | 6.5         | 5.76       | 1.8        | 0.10  | 0.17    | 0.18  |
|         | and            | 608.1     | 661.7   | 53.6        | 47.2       | 14.4       | 0.002 | 0.1     | 0.1   |
|         | which includes | 657       | 661.7   | 4.7         | 4.15       | 1.3        | 0.002 | 0.33    | 0.33  |
|         | and            | 902.5     | 912.5   | 10          | 9.3        | 2.8        | 0.02  | 0.14    | 0.14  |
|         | and            | 983.2     | 992.6   | 9.4         | 8.7        | 2.7        | 2.66  | 0.12    | 0.37  |



Drill Holes 14 – 23 are reported as CoEq grades

|         |                                 | From           |                | Drilled        | True        | True         |              |              |              |
|---------|---------------------------------|----------------|----------------|----------------|-------------|--------------|--------------|--------------|--------------|
| HoleID  |                                 | feet           | To feet        | Length         | thickness   | thickness    | Cobalt%      | Copper%      | CoEq %       |
|         |                                 |                |                | feet           | feet        | meters       |              |              |              |
| IC17-21 |                                 | 129.0          | 203.7          | 74.7           | 68.4        | 20.8         | 0.23         | 0.32         | 0.26         |
|         | including                       | 129.0          | 184.4          | 55.4           | 50.5        | 15.4         | 0.29         | 0.25         | 0.31         |
|         | which includes                  | 139.8          | 148.7          | 8.9            | 8.1         | 2.5          | 0.39         | 0.34         | 0.43         |
|         | and includes                    | 173.9          | 184.4          | 10.5           | 9.6         | 2.9          | 0.53         | 0.33         | 0.56         |
|         | and                             | 345.6          | 392.1          | 46.5           | 44.2        | 13.5         | 0.24         | 0.01         | 0.24         |
|         | including                       | 357.0          | 370.4          | 13.4           | 12.7        | 3.9          | 0.55         | 0.01         | 0.55         |
|         | and                             | 425.6          | 457.0          | 31.4           | 30.2        | 9.2          | 0.17         | 0.00         | 0.17         |
|         | including                       | 442.8          | 453.0          | 10.2           | 9.8         | 3.0          | 0.26         | 0.00         | 0.26         |
|         | and                             | 583.0          | 592.1          | 9.1            | 8.8         | 2.7          | 0.12         | 0.02         | 0.12         |
|         | and                             | 753.0          | 762.0          | 9.0            | 8.8         | 2.7          | 0.10         | 0.01         | 0.10         |
|         | and                             | 854.8          | 860.0          | 5.2            | 5.1         | 1.5          | 0.18         | 0.03         | 0.18         |
|         |                                 |                |                |                |             |              |              |              |              |
| IC17-22 |                                 | 332.7          | 348.0          | 15.3           | 10.0        | 3.1          | 0.08         | 1.04         | 0.18         |
|         | including                       | 332.7          | 338.0          | 5.3            | 3.5         | 1.1          | 0.11         | 2.11         | 0.31         |
|         | and                             | 430.0          | 473.0          | 43.0           | 29.2        | 8.9          | 0.11         | 0.16         | 0.13         |
|         | including                       | 444.6          | 455.0          | 10.4           | 7.1         | 2.2          | 0.20         | 0.07         | 0.21         |
|         | and including                   | 464.4          | 473.0          | 8.6            | 5.8         | 1.8          | 0.27         | 0.03         | 0.27         |
|         | and                             | 608.1          | 942.0          | 333.9          | 232.7       | 70.9         | 0.14         | 0.02         | 0.14         |
|         | including                       | 638.6          | 675.5          | 36.9           | 26.0        | 7.9          | 0.30         | 0.01         | 0.30         |
|         | and including                   | 691.5          | 721.5          | 30.0           | 20.7        | 6.3          | 0.26         | 0.00         | 0.26         |
|         | which includes                  | 713.0          | 721.5          | 8.5            | 5.8         | 1.8          | 0.62         | 0.00         | 0.62         |
|         | and including                   | 884.7          | 942.0          | 57.3           | 40.3        | 12.3         | 0.28         | 0.01         | 0.28         |
|         | which includes                  | 890.5          | 913.4          | 22.9           | 16.0        | 4.9          | 0.47         | 0.01         | 0.47         |
| IC17-23 |                                 | 149.2          | 606.2          | 457.0          | 308.0       | 93.9         | 0.10         | 0.07         | 0.11         |
| 1017-23 | including                       | 149.2<br>149.2 | 500.8          | 457.0<br>351.6 | 233.7       | 93.9<br>71.2 | 0.10         | 0.07         | 0.11         |
|         | which includes                  | 186.5          | 224.0          | 37.5           |             | 71.2<br>7.5  | 0.12         | 0.08         | 0.13         |
|         |                                 |                |                |                | 24.5        | 7.5<br>2.2   |              |              |              |
|         | which includes                  | 212.9<br>243.0 | 224.0<br>273.7 | 11.1<br>30.7   | 7.3<br>20.6 | 6.3          | 0.41<br>0.13 | 0.31<br>0.11 | 0.44<br>0.14 |
|         | and including                   |                |                |                |             |              |              |              |              |
|         | and including                   | 305.0<br>372.2 | 382.9<br>378.0 | 77.9<br>5.8    | 52.0<br>3.9 | 15.8<br>1.2  | 0.13<br>0.21 | 0.15<br>1.08 | 0.14<br>0.31 |
|         | which includes<br>and including | 372.2<br>398.6 | 378.0<br>455.8 | 5.8<br>57.2    | 3.9<br>38.9 | 11.9         | 0.21         | 0.02         | 0.31         |
|         | which includes                  |                |                | 57.2<br>6.4    | 38.9<br>4.4 | 11.9         |              |              |              |
|         |                                 | 398.6          | 405.0          | 6.4<br>15.3    |             | 3.2          | 0.26         | 0.04         | 0.26<br>0.22 |
|         | and including                   | 485.5          | 500.8          |                | 10.4        |              | 0.22         | 0.01         |              |
|         | and including                   | 570.1          | 606.2          | 36.1           | 26.3        | 8.0          | 0.11         | 0.00         | 0.11         |
|         | which includes                  | 591.0          | 601.8          | 10.8           | 7.5         | 2.3          | 0.16         | 0.00         | 0.16         |



Drill Holes 24, 25 and 27 are reported as CoEq grades

| Hole ID and description           |               | From feet | To<br>feet | Drilled<br>Length<br>feet | True<br>Width feet | True<br>Width<br>meters | Cobalt % | Copper% | CoEq % |
|-----------------------------------|---------------|-----------|------------|---------------------------|--------------------|-------------------------|----------|---------|--------|
| IC17-24<br>Western extent         | Interval      | 633.1     | 647.7      | 14.6                      | 12.8               | 3.9                     | 0.23     | 3.53    | 0.57   |
| - exploration                     | including     | 642.5     | 647.7      | 5.2                       | 4.6                | 1.4                     | 0.44     | 3.89    | 0.81   |
| CAPICI GIO                        | Interval      | 792       | 799.2      | 7.2                       | 6.4                | 2.0                     | 0.20     | 0.36    | 0.23   |
|                                   | Interval      | 818.6     | 842.4      | 23.8                      | 21.4               | 6.5                     | 0.12     | 0.01    | 0.13   |
|                                   | Interval      | 903       | 909.6      | 6.6                       | 6.0                | 1.8                     | 0.17     | 0.00    | 0.17   |
|                                   | Interval      | 985.2     | 1054.8     | 69.6                      | 63.3               | 19.3                    | 0.17     | 0.00    | 0.17   |
|                                   | including     | 993.5     | 1002.1     | 8.6                       | 7.8                | 2.4                     | 0.35     | 0.00    | 0.35   |
|                                   | and including | 1032.4    | 1043       | 10.6                      | 9.7                | 3.0                     | 0.39     | 0.00    | 0.39   |
|                                   | Interval      | 1088.4    | 1099.6     | 11.2                      | 10.2               | 3.1                     | 0.10     | 0.00    | 0.10   |
|                                   |               |           |            |                           |                    |                         |          |         |        |
| IC17-25                           | Interval      | 202.7     | 365.9      | 163.2                     | 66.1               | 20.1                    | 0.11     | 0.06    | 0.11   |
| Between the two Historic Estimate | including     | 204       | 216.2      | 12.2                      | 4.9                | 1.5                     | 0.22     | 0.05    | 0.23   |
| Targets                           | and including | 289.5     | 297.8      | 8.3                       | 3.3                | 1.0                     | 0.30     | 0.03    | 0.31   |
| Turgets                           | Interval      | 454.4     | 480        | 25.6                      | 10.5               | 3.2                     | 0.21     | 0.01    | 0.21   |
|                                   | Interval      | 522.1     | 629.4      | 107.3                     | 46.4               | 14.1                    | 0.15     | 0.01    | 0.15   |
|                                   | including     | 530.8     | 537.8      | 7.0                       | 3.0                | 0.9                     | 0.27     | 0.03    | 0.27   |
|                                   | and including | 601.8     | 623.2      | 21.4                      | 9.3                | 2.8                     | 0.37     | 0.00    | 0.37   |
|                                   | Interval      | 673.5     | 679        | 5.5                       | 2.4                | 0.7                     | 0.25     | 0.00    | 0.25   |
|                                   |               |           |            |                           |                    |                         |          |         |        |
| IC17-27                           | Interval      | 826.3     | 934.8      | 108.5                     | 93.2               | 28.4                    | 0.17     | 0.01    | 0.17   |
| Western extent - exploration      | including     | 826.3     | 832.5      | 6.2                       | 5.3                | 1.6                     | 0.22     | 0.14    | 0.24   |
| - exploration                     | and including | 870.8     | 877.9      | 7.1                       | 6.1                | 1.9                     | 0.36     | 0.00    | 0.36   |
|                                   | and including | 888.9     | 903.8      | 14.9                      | 12.8               | 3.9                     | 0.20     | 0.00    | 0.20   |
|                                   | and including | 913       | 928.4      | 15.4                      | 13.5               | 4.1                     | 0.24     | 0.00    | 0.24   |
|                                   | Interval      | 1005.8    | 1058.2     | 52.4                      | 45.8               | 14.0                    | 0.11     | 0.01    | 0.11   |
|                                   | including     | 1005.8    | 1015.3     | 9.5                       | 8.3                | 2.5                     | 0.16     | 0.01    | 0.17   |
|                                   | and including | 1029.9    | 1031.9     | 2.0                       | 1.7                | 0.5                     | 0.23     | 0.02    | 0.23   |
|                                   | and including | 1042.2    | 1045.4     | 3.2                       | 2.8                | 0.9                     | 0.53     | 0.01    | 0.53   |
|                                   | Interval      | 1098.2    | 1103.5     | 5.3                       | 4.7                | 1.4                     | 0.20     | 0.00    | 0.20   |



Drill Holes 29 and 30 are reported as CoEq grades

| Hole ID and<br>description |               | From feet | To<br>feet | Drilled<br>Length<br>feet | True<br>Width<br>feet | True<br>Width<br>meters | Cobalt<br>% | Copper% | CoEq % |
|----------------------------|---------------|-----------|------------|---------------------------|-----------------------|-------------------------|-------------|---------|--------|
| IC17-29<br>Main Historic   | Interval      | 182.3     | 185        | 2.7                       | 1.9                   | 0.6                     | 0.52        | 0.08    | 0.52   |
| Estimate Target            | Interval      | 239.8     | 245.4      | 5.6                       | 4.1                   | 1.2                     | 0.34        | 0.10    | 0.35   |
|                            | Interval      | 297.5     | 309        | 11.5                      | 8.9                   | 2.7                     | 0.13        | 0.00    | 0.13   |
|                            | Interval      | 371       | 471        | 100.0                     | 78.4                  | 23.9                    | 0.35        | 0.53    | 0.40   |
|                            | including     | 379.1     | 389.3      | 10.2                      | 8.0                   | 2.4                     | 0.71        | 0.01    | 0.71   |
|                            | and including | 403.2     | 441.7      | 38.5                      | 30.2                  | 9.2                     | 0.46        | 0.92    | 0.55   |
|                            | which incl.   | 403.2     | 418.6      | 15.4                      | 12.1                  | 3.7                     | 0.60        | 1.11    | 0.70   |
|                            | which incl.   | 411.6     | 418.6      | 7.0                       | 5.5                   | 1.7                     | 0.71        | 1.23    | 0.82   |
| IC17-30                    |               |           |            |                           |                       |                         |             |         |        |
| Western extent             | Interval      | 265       | 315.2      | 50.2                      | 39.3                  | 12.0                    | 0.07        | 2.58    | 0.31   |
| - exploration              | including     | 268       | 274.2      | 6.2                       | 4.8                   | 1.5                     | 0.09        | 11.28   | 1.15   |
|                            | Interval      | 425       | 450        | 25.0                      | 20.6                  | 6.3                     | 0.11        | 0.37    | 0.15   |
|                            | including     | 425       | 430        | 5.0                       | 4.1                   | 1.2                     | 0.33        | 1.06    | 0.43   |
|                            | Interval      | 546       | 685        | 139                       | 115.0                 | 35.1                    | 0.14        | 0.20    | 0.16   |
|                            | including     | 561       | 610.6      | 49.6                      | 41.0                  | 12.5                    | 0.19        | 0.44    | 0.23   |
|                            | which incl.   | 581       | 591        | 10.0                      | 8.2                   | 2.5                     | 0.47        | 0.39    | 0.51   |
|                            | and including | 632.4     | 640        | 7.6                       | 6.3                   | 1.9                     | 0.34        | 0.01    | 0.34   |
|                            | and including | 674.3     | 685        | 10.7                      | 8.9                   | 2.7                     | 0.21        | 0.00    | 0.21   |
|                            | Interval      | 715       | 720        | 5.0                       | 4.1                   | 1.2                     | 0.27        | 0.00    | 0.27   |



# Management

#### **WAYNE TISDALE**

President, CEO & Director

Wayne Tisdale has 40 years of experience in investing, financing and consulting to private and public companies in the areas of mining, oil and gas, and agriculture. He runs his own merchant bank and sits on the board of a number of private and public companies. Over his career, Mr Tisdale has raised over \$2bn of both equity and debt financing and has been instrumental in founding several highly successful companies, including Rainy River Resources (purchased by Newgold) and Ryland Oil Corporation (purchased by Crescent Point).

#### **BRIAN KIRWIN**

Senior Vice President, Exploration & Director

Mr. Kirwin, BA Earth Sciences, Dartmouth College, MSc Mineral Exploration, Queen's University, is an accomplished mining executive and geoscientist with over 33 years of experience with both senior and junior mining companies. Mr. Kirwin began his career in mining, working in exploration and corporate development on projects, from grass roots to mines, for companies such as Placer Dome, Freeport McMoRan and Cominco. He has served in leadership positions in various capacities from CEO and founder of American Bonanza Gold Corp. and Nevada Copper to VP Exploration for Vengold Inc. With global experience evaluating and developing deposits, mines and risk worldwide, Mr. Kirwin has led his teams to several discoveries.



# Management

#### MICHELLE GAHAGAN

Chair & Director

Ms. Gahagan has been a director of US Cobalt since January, 2011. Ms. Gahagan is currently a director of Moovly Media Inc (TSXV: MVY) and Versus Systems Inc. (CSE:VS). Prior to her involvement in merchant banking, Ms. Gahagan graduated from Queens University Law School and practiced corporate law for 20 years. Ms. Gahagan has extensive experience advising companies with respect to international tax-driven structures, mergers and acquisitions. Ms. Gahagan has successfully completed the Investment Management Certificate course offered by the Financial Conduct Authority (UK).

#### **GARRY CLARK**

#### Independent Director

Mr Clark is the Executive Director of the Ontario Prospectors Association (OPA). He has been a Director, Vice President or President of the OPA since its formation in the early 1990s. Mr Clark currently serves on the Minister of Mines Mining Act Advisory Committee (Ontario) and the Ontario Geological Survey Advisory Board. He graduated with a BSc (Geology) from Lakehead University, Thunder Bay. Mr Clark brings to the company extensive experience in managing large scale exploration and development programs internationally including Asia and North America. In addition to over 30 years of consulting experience, he has held geological positions with a number of mining companies and has served as a director of other TSX Venture Exchange listed companies, including his current position with NexOptics Technologies and Kapuskasing Gold.

#### JAMES WELYKOCHY

#### **Independent Director**

Mr James Welykochy has over 30 years of experience in the oil and gas industry and energy related capital markets. He is a Professional Geologist (a member of APEGA and CSPG) and also has considerable experience in the capital markets having held various roles as an equity analyst as well as being involved in institutional sales and corporate finance and investment banking. Mr. Welykochy also has experience as a member of the board of directors of other public companies including LGX Oil & Gas Inc. and Ryland Oil Corporation.



USCO:TSX-V

27

# **Capital Structure**

# Source: www.tmxmoney.com 2/26/2018, Six month chart

28

#### **TRADING SYMBOLS:**

TSX Venture USCO

Frankfurt 26X

US **USCFF** 

Outstanding 67.2 Million

Warrants 17.3 Million

52 week High \$0.99

52 week Low \$0.45

#### **FINANCINGS TO DATE:**

\$2m at \$0.20

\$500k at \$0.23

\$1m at \$0.45

\$1.7m at \$0.85

\$5.75m at \$0.53

#### **FUTURE FINANCING NEEDS:**

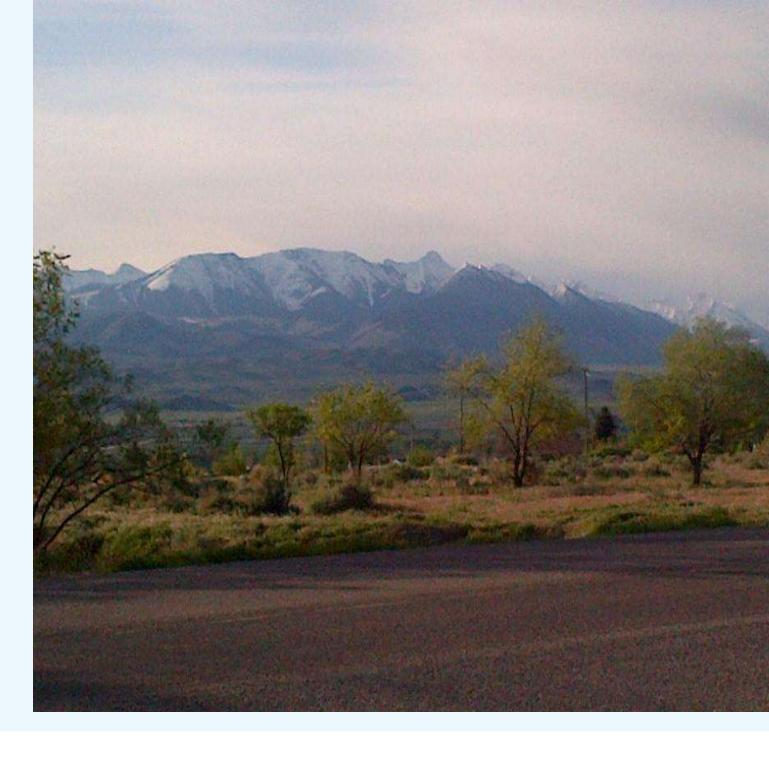
The company is fully financed to execute its current exploration program. An additional private placement may be considered in order to expe- dite the conversion of the substantial historical data in order to comply with current NI 43-101 standards.



# Contact

#### **CORPORATE ADDRESS:**

302 – 1620 West 8th Ave. Vancouver, BC V6J 1V4 Canada


www.uscobaltinc.com

# FOR FURTHER INFORMATION PLEASE CONTACT:

Kelsey Chin Corporate Secretary

**Phone:** (604) 639 4457

Email: info@uscobaltinc.com

